
Use Case from the ODP Viewpoint

Joaquin Miller

Lovelace Computing Company
joaquin at acm dot org

Abstract. Discussion of use cases and UML often focuses on the UML use case
diagram. Use case diagrams are contrasted (usually unfavorably) with text use
cases. But specification of use cases with UML is not limited to the use case
diagram. In fact UML 2 includes a variety of expressive techniques for
specifying a use case. This paper looks at UML use cases from the ODP
viewpoint, and describes UML use case specification techniques in ODP terms.

Introduction

The Reference Model of Open Distributed Processing (RM-ODP) [1] provides
concepts for interpreting the concepts of a modeling language, for building models
and for explaining the notions of conformance to a model and of conformance testing.

Because of the great practical value of the Reference Model in specification of
software, and for thinking about languages for the specification of software, it can be
helpful to use ODP concepts to understand other modeling concepts.

In this short contribution I offer one way to interpret the use case of UML 2 [2]
using ODP concepts. My hope is that this will provide a useful framework for
discussing the other concerns of this volume.

The question and its answer

The question is:
In a specification of a particular system, what is or should be the relationship

between the ODP concepts and the UML use case concepts.

The answer is:
A particular use case of a certain system is a part of the community contract of a

community of a certain type. Let’s call communities of that type ‘use case
communities.’ In that use case community, that system is represented as a single
object. The roles in that community are of two kinds, one or more actor roles and a
single subject role. The object representing the system fulfills the subject role.
Objects in the environment of the system fulfill the actor roles. The objective of that
community is the observable result of value of that use case (the value to one or more
of the actors of that use case).

2 Joaquin Miller

This explains “the key concepts associated with use cases … actors, use cases, and
… subject.” [16.1] 1

The specification relationships between use cases, specialization, inclusion, and
extension, are discussed by Genilloud and Frank in another paper in this volume.[3]

They also discuss use case types, use case templates, and use case actions (i.e. use
case occurrences, use case executions, instances of use case types, or instantiations of
use case templates), so i’ll adopt a relaxed attitude to these important distinctions.

ODP

The Reference Model of Open Distributed computing provides, in Part 2, an
analytical framework and concepts for specification of systems. In Part 3, the
reference model provides five viewpoints and corresponding specification languages.

The enterprise viewpoint is “a viewpoint on a … system and its environment that
focuses on the purpose, scope and policies for that system. [3-4.1.1.1]2 “The enterprise
language uses concepts taken from [Part 2], and introduces refinements of those
concepts, prescriptive rules and additional viewpoint-specific concepts…”

Enterprise language concepts important for use cases are object, action, behavior,
role, contract, community, and objective or purpose.3

A community is “a configuration of objects formed to meet an objective.” [3-5.1.1]
“In an enterprise specification, an ODP system and the environment in which it
operates are represented as a community. At some level of description the ODP
system is represented as an enterprise object in the community.” [3-5.2]

“The objectives [i.e., purpose] and scope of the ODP system are defined in terms
of the roles it fulfils within the community of which it is part…” [3-5.2]

As defined in Part 2, role is problematic. [2-9.14] For our purpose here, it will be
useful to think of a role as a model element used to specify an action or behavior
without identifying a particular participant in that behavior. That is, a role serves as a
placeholder, used when the specifier of a community does not wish to be more
specific at that place in the specification.[4] Later, a specific object fulfills that role.
Likewise, roles are used to specify a community template, and objects are bound to
(some of) the roles when a community is instantiated using that template.

Thus, a community in which the system is represented as a single object may be
specified as comprised of that object and roles for objects in the environment of that
object. Let’s call these ‘environment roles.’ These roles specify the behavior of the
objects in the environment. This enables specification of the community, without
identifying specific objects in the environment. For uniformity, the behavior of the
system may also be specified as a role or roles, the role of the system.

1 References of this form are to the UML 2 Final Adopted Specification. [2] This reference is
to section 16.1 of the specification.

2 References of this form are to clauses of the RM-ODP standard. This reference is to
subclause 4.1.1.1 of Part 3, X.903 | IS 10746-3. References of this form that begin with ‘2-’
are to Part 2, X.902 | IS 10746-2, those beginning with ‘11-’ are to X.911 | IS 15414. See
reference [1].

3 Another important enterprise language concept is policy. It is not essential for this discussion.

Use Case from the ODP Viewpoint 3

The scope of the system is “the behaviour that system is expected to exhibit.”
[11-6.1.1] The objective of the system is its “pUDFWLFDO� DGYDQWDJH� RU� LQWHQGHG�HIIHFW«´�>��������@���7KH�VSHFLILFDWLRQ�RI�D�FRPPXQLW\�LQFOXGHV�D�FRPPXQLW\�FRQWUDFW���³7KH�REMHFWLYH�RI� WKH�FRPPXQLW\� LV�H[SUHVVHG� LQ�D�FRQWUDFW� WKDW� VSHFLILHV�KRZ� WKH�REMHFWLYH�FDQ�EH�PHW��7KLV�FRQWUDFW��VWDWHV� WKH�REMHFWLYH�IRU�ZKLFK� WKH�FRPPXQLW\�H[LVWV��JRYHUQV� WKH�VWUXFWXUH��WKH�EHKDYLRXU�DQG�WKH�SROLFLHV�RI�WKH�FRPPXQLW\��FRQVWUDLQV�WKH�EHKDYLRXU�RI� WKH� PHPEHUV� RI� WKH� FRPPXQLW\�� >DQG@� VWDWHV� WKH� UXOHV� IRU� WKH� DVVLJQPHQW� RI�HQWHUSULVH�REMHFWV�WR�UROHV�´��>��������@�

UML

A UML 2 “use case is the specification of a set of actions performed by a system,
which yield an observable result that is…of value for one or more actors...”4 [16.3.6]5

Use cases “are used to capture the requirements of a system, that is, what a system is
supposed to do.” [16.1]

“The subject is the system under consideration to which the use cases apply.”
[16.1] “Use cases need not be attached to any specific subject...” that is, a UML use
case can be used to describe the behavior of more than one system.

A UML 2 actor is a collection of roles.[16.3.1]6 One role per use case of that actor.
A use case can have several actors. In a use case, the system also fulfills a role, UML
calls this role, ‘subject.’ The purpose of the system in the role, subject, corresponds
to the purpose of the use case.

A use case diagram has four purposes. First, it provides a list of use cases.
Second, it specifies the actors of each of those use cases. Third, a use case diagram
may also show specification relationships between the use cases. Finally, it may
identify a subject for the use cases. We are concerned with the second purpose. To
be precise about that, I need to write: A use case diagram specifies, for each of the use
cases, the actors with roles in that use case.

A UML use case is a behaviored classifier. Whatever else that means, it means
that a use case may have UML behaviors. “The behavior of a use case can be
described by a specification … such as interactions, activities, and state machines, or
by pre-conditions and post-conditions as well as by natural language text … It may

4 When it suits my didactic purpose, I will take the liberty of deleting portions of text quoted
from the UML 2 specification.

5 References of this form are to sections of the UML 2.0 Superstructure Final Adopted
Specification. See reference [2]. This is a reference to section 16.3.1 of the specification. By
the time this paper is published, OMG will have published the UML 2.0 Superstructure
Available Specification; section numbers will be changed in some cases; text and even the
meaning or intended use of concepts may change.

6 The specification says that a UML 2 “actor specifies a role.” If intended, this is a change
from UML 1. In UML 1, “each actor defines a coherent set of roles.” [5] This is not noted as
a change in the UML 2 specification; no rationale for this change is given. Elsewhere the
UML 2 text says “each actor defines a coherent set of roles.” Since the UML 2 specification
tells us that “the term ‘role’ is used informally” in the discussion of actor, I take the liberty of
interpreting UML 2 actor and this use of ‘role’ as I explain in this paper.

4 Joaquin Miller

also be described indirectly through a collaboration … These descriptions can be
combined.” [16.3.6]

Textual use cases are specifically authorized by UML 2, and they can be used
exclusively, or combined with other techniques of behavior specification, such as the
widely used interactions. The UML action language provides the capability to
completely specify a behavior of any of the UML behavior kinds.

When use cases are used systematically, the set of use cases of a system can be a
partition of the interactions of the system with its environment. Then those use cases
completely specify the externally observable behavior of that system.

To complete the picture, we will need one more element of UML, collaboration.
“A collaboration describes a structure of collaborating elements (roles), each
performing a specialized function, which collectively accomplish some desired
functionality.” [9.3.3] “A collaboration occurrence [or use7] represents the application
of the pattern described by a collaboration to a specific situation involving specific
classes or instances playing the roles of the collaboration.” [9.3.4]

I don’t grok UML 2 collaboration, so i can only offer a naïve discussion here.
The UML 2 specification tells us that a use case “…may also be described

indirectly through a collaboration that uses the use case and its actors as the classifiers
that type its parts.” [16.3.6] I’ll stick my neck out, and say that a use case may be
specified using a collaboration with the subject of that use case and the roles of the
actors in the use case as the roles of the collaboration.

“A collaboration in UML 2.0 is a kind of [behaviored] classifier, and can have any
kind of behavioral descriptions associated.” [9.3.3] That is, a collaboration declares
the roles, and the behavior can be described by a specification such as an interaction,
activity, or state machine; thus, when a collaboration is used, the behavior of the use
case is “described indirectly.”

Role bindings are used to assign participants to a collaboration use.
I feel that representation of a use case as a collaboration along with a behavior best

serves the objectives of a model: The roles of the collaboration are the actor and
subject roles of the use case. A role binding serves to identify the subject. The use
case diagram can then be used to list the use cases and specify their specification
relationships.

Now we have all the elements we need to use UML to explain UML use case in
ODP terms.

Use Case in ODP in UML

With this background, I’ll expand on the answer given at the beginning.
A particular use case of a particular system is a part of the community contract of a

community of a certain type.
That use case community is modeled as a UML collaboration. Let’s call

collaboration of that type ‘use case collaborations.’

7 UML 2 collaboration occurrence will probably be renamed ‘collaboration use’ in the
Available Specification.

Use Case from the ODP Viewpoint 5

The roles in that collaboration are of two kinds, one or more actor roles and a
single subject role.

For that collaboration, that system is represented as a single UML object. That
object is bound to the subject role by a role binding. UML actors “type” the actor
roles.

The objective of that community is the observable result of value of that use case
(the value to one or more of the actors of that use case).

The contract of that community is specified in this way: � the objective in a text note, � the structure by the connectors and role bindings of the collaboration, � the behavior by one or more of text, pre- and postconditions, or behaviors, � the rules for the assignment of objects to roles by types and constraints, � the other rules by multiplicities, types, and constraints.
The answer given at the beginning said that a particular use case of a certain

system is a part of the community contract of a use case community. I wrote ‘a part’
to allow for readings of the UML specification that treat some of the contract as not
being specified in the use case. On the other hand, if we read the specification as
permitting us to include in the specification of the use case (as behavior(s),
constraints, types, role bindings, and so on) all of the community contract, then that
use case includes the entire contract of that use case community.

A UML enterprise viewpoint specification of that particular system includes a
collaboration which is a composition [2-9.1] of all the use case collaborations that
include that system in the role, subject. The way in which those use cases are
combined is: � the role of the system in that collaboration is the composition of the subject roles in

each use case collaboration; � the other roles in that collaboration are actor roles; each is a composition of actor
roles of those use case collaborations; � every role in those use case collaborations is included in at least one of the actor
roles; � the behavior of each actor is the composition of the behaviors of the roles of that
actor in those use case collaborations; � the contract of that collaboration is the conjunction (or other composition) of the
contracts of those use case collaborations.
The specification of the subject roles and the actors roles may be the complete

enterprise specification of the behavior of the system; if so, we can say that, from the
enterprise viewpoint, the behavior of the system is completely specified by it use
cases.

Further work

Though i wrote that the behavior of an actor is the composition of the behaviors of
the roles of that actor, I have not specified the way in which those behaviors are
combined.

6 Joaquin Miller

Readers familiar with the ODP enterprise language will have noticed that I have
not attempted to discuss all the capabilities of the enterprise language that might be
applied to use cases.

Readers familiar with the UML 2 specification of use case will have noticed that
I’ve made no effort to tease out and attempt to exactify [6] the several theories of use
case that are found when reading the UML 2 specification. Instead I’ve chosen texts
from the UML specification that are consistent with a theory of use case that fits with
the Reference Model. That suits my purpose, which is to explicate UML 2 use case
from the ODP viewpoint.
Once the bugs in this first attempt are found and removed, it remains to exactify it.
This can be done, for example, using the techniques of Part 4 of the Reference Model.
[7] Much of that work can be done using OCL [8] and the UML profile mechanism,
by specializing UseCase, Collaboration, and so on.

References

1. ISO/IEC JTC1/SC21, Open Distributed Processing—Reference Model: Foundations,

Architecture, and Enterprise Language, ITU-T Recommendations X.902, X.903, and X.911 |
ISO/IEC 10746-2, 10746-3 and 15414
www.joaquin.net/ODP

2. UML 2 Superstructure Final Adopted Specification
www.omg.org/cgi-bin/doc?ptc/2003-08-02
(This will be replaced by the approved specification. See www.omg.org/uml)

3. Guy Genilloud and William F. Frank, Use Case Concepts from an RM-ODP Perspective, in
…, Berlin: Springer, 2004. LNCS ….

4. 3C UML 2 submission
www.joaquin.net/cuml/3C-UML--2.14.pdf

5. UML 1.5 Approved Specification
www.omg.org/cgi-bin/doc?formal/03-03-01

6. ISO/IEC JTC1/SC21, Open Distributed Processing—Reference Model: Architectural
semantics, ITU-T Recommendation X.904 | ISO/IEC 10746-4

7. Mario Bunge, Philosophical Dictionary, Amherst NY: Prometheus Books, 2003.
ISBN 1-59102-037-9

8. OCL Final Adpoted Specification
http://www.omg.org/cgi-bin/apps/doc?ptc/03-10-14.pdf

