
1 Metamodeling directed relationships in UML

Modeling and metamodeling in Model Driven Development

Metamodeling directed relationships in UML

Warsaw, May 14-15th 2009

Gonzalo Génova

ggenova@inf.uc3m.es

http://www.kr.inf.uc3m.es/ggenova/

Knowledge Reuse Group

Universidad Carlos III de Madrid

2 Metamodeling directed relationships in UML

Structure of the seminar

What is a model:

syntax and semantics

What is a metamodel:

the OMG’s metamodeling

infrastructure

Metamodeling directed

relationships in UML

On the difference between

analysis and design

models

3 Metamodeling directed relationships in UML

Sources

• My own ideas and elaboration.

– Thanks to Kyriakos Anastasakis and Dan Chiorean for help with OCL.

– In preparation for Journal of Visual Languages and Computing.

We hope from a scholar to tell something others have not seen,

and he himself does not see very well.

(Daniel Innerarity)

4 Metamodeling directed relationships in UML

Table of contents

1. Introduction

2. The original problem

3. Semantics of generalization

4. Other directed relationships

5. Conclusions

5 Metamodeling directed relationships in UML

Introduction

6 Metamodeling directed relationships in UML

Purpose

• The original problem:

– How to find the children classifiers of a given classifier?

– Does UML provide a way to do this?

• The problem is found in any tool that manipulates models.

– CASE tools: if I modify a class, which subclasses will be affected?

– Retrieval tools: if I search for a class in a repository, shall I be satisfied

by any answer that contains the subclasses as well?

• My purpose is to “convince” the audience that:

– There is a flaw in the UML metamodel, and

– The source of this flaw is a misunderstanding of metamodeling levels.

• In order to “really” convince, I expect from the audience:

– Skepticism (maybe I am wrong), and

– Openmindedness (maybe I am right!).

7 Metamodeling directed relationships in UML

Before continuing: what is association navigability

• In UML 1.x:

– Not defined (!)

• In my PhD Thesis:

– Navigability specifies the ability of an instance
of the source class to access the instances of
the target class by means of the association
instances (links) that connect them.

– Navigability is closely related to the ability of
sending messages, so that very often this two
concepts are identified.

• In UML 2.x:

– Navigability means instances participating in
links at runtime (instances of an association)
can be accessed efficiently from instances
participating in links at the other ends of the
association. (...). Note that tools operating on
UML models are not prevented from navigating
associations from non-navigable ends.

public class A { }

// A knows nobody

public class B extends A {

A myA;}

// B knows A

public class C extends A {

A myA;}

// C knows A

B C

A

myA myA

8 Metamodeling directed relationships in UML

The original problem

9 Metamodeling directed relationships in UML

public class A { }

public class B extends A { }

public class C extends A { }

// A does not know B and C.
// B and C know A.

The original problem

B C

A

• How to find the children classifiers of a given classifier?

• Does UML provide a way to do this?

• At least, nUML does not. Eclipse?

10 Metamodeling directed relationships in UML

The answer in the UML metamodel (1)

Unified Modeling Language: Superstructure,
version 2.1.1, February 2007

11 Metamodeling directed relationships in UML

The answer in the UML metamodel (2)

Metaclass Classifier (pp. 54-56)

Constraints: [1] The general classifiers are the classifiers referenced by
the generalization relationships.

general = self.parents()

Additional Operations: [2] The query parents() gives all of the immediate

ancestors of a generalized Classifier.

Classifier::parents(): Set(Classifier);

parents = generalization.general

� general = self.parents() = self.generalization.general

12 Metamodeling directed relationships in UML

The answer in the UML metamodel (3)

Both meta-associations general are one-way. The opposite roles are

anonymous, and consequently there is not a reciprocal operation:

Classifier::children(): Set(Classifier);

children = “specialization”.specific

so that we cannot define the constraint:

“specific” = self.children()

� We cannot directly know the children of a given classifier.
“specific”

“specialization”

13 Metamodeling directed relationships in UML

The answer in the UML metamodel (4)

The only way to know the children would be:

Classifier::children(): Set(Classifier);

children = Classifier.allInstances()->select(e | e.parents()->includes(self))

�We have to (inefficiently) iterate the entire model to find the children of

a given parent.

�The parent class does not know the child class.

�This sounds reasonable.

�Is it?

14 Metamodeling directed relationships in UML

The answer in the UML metamodel (5)

A more efficient alternative is:

Classifier::children(): Set(Classifier);

children = Generalization.allInstances()->select(g:Generalization |

g.general=self)->collect(s:Generalization | s.specific)->asSet()

�There are less Generalizations that Classifiers.

�Instead of testing inclusion, we test equality.

�But we still have to iterate the entire model.

15 Metamodeling directed relationships in UML

Semantics of generalization

16 Metamodeling directed relationships in UML

Generalization and dependency / directionality

• In the code:

– The child class knows the parent, but not

viceversa.

– Expressed in the model as a directed

relationship (a generalization).

• Every generalization induces a

dependency subclass � superclass.

– A generalization is not a dependency,

but induces it.

• In every dependency:

– The dependent element requires the

presence of the independent element.

– Changes in the independent element

may affect the dependent element.

public class A { }

// A knows nobody

public class B extends A { }

// B knows A

public class C extends A { }
// C knows A

B C

A

17 Metamodeling directed relationships in UML

Represented reality, model, and metamodel

• Now forget the code (modeled reality)

and concentrate on the model itself.

– Do not look at the classes represented by

rectangles, look at the rectangles.

– Is it true that rectangle A does not know

rectangles B and C?

• What happens if rectangle A is deleted?

– The arrows are deleted, too.

– Thus, rectangle A knew the arrows.

• We should be very careful to distinguish:

– The code (text) that is represented by
the model.

– The model (graph) that is conformant to
the rules expressed in the metamodel. B C

B C

A

18 Metamodeling directed relationships in UML

The two MM relationships: represented-by / conformant-to

public class A { }

// A knows nobody

public class B extends A { }

// B knows A

public class C extends A { }

// C knows A B C

A
represented by

conformant to

19 Metamodeling directed relationships in UML

Metamodel of generalization (1)

• The metamodel defines the rules that models must conform to.

– Models are considered linguistic expressions (in a graphical language).

– The abstract syntax specifies legal combinations of model elements.

• The generalization arrow is metamodeled as follows:

– A metaclass that represents the generalization itself (Generalization).

– A meta-association that represents its tail (specific).

– A meta-association that represents its head (general).

20 Metamodeling directed relationships in UML

Metamodel of generalization (2)

• The directionality of the generalization arrow is expressed in

the metamodeled by two meta-associations.

– Why should one of these be one-way? Why not both of them?

– Because generalization is one-way? Well, this is only a hypothesis…

• The metamodel is unduly trying to represent a feature of the

semantic domain, instead of the features of the language.

21 Metamodeling directed relationships in UML

Mixing metamodeling levels

• M0 – the represented reality (the code)

– A generalization is one-way, from the subclass to the superclass.

– The general element must not know the specific element.

• M1 – the model representing the code

– The directionality of generalization (M0) is represented by an arrow (M1).

– The arrow, the linguistic element, the graphical symbol, is an object that

expresses a direction but has not a direction itself.

– The arrow knows the two boxes, and the two boxes know the arrow.

• M2 – the metamodel (the rules of the modeling language)

– The directionality of generalization is sufficiently represented by two

meta-associations. This should be enough.

– Introducing directionality in these meta-associations mixes M2-M1-M0.

– Practical tools will disobey the metamodel in this point.

22 Metamodeling directed relationships in UML

Other directed relationships

23 Metamodeling directed relationships in UML

UML 2.1.1 Figure 7.9

The case of dependency

• Compare Figures 7.9 and 7.15:

– Multiplicities, composition.

– Rolename “supplierDependency”.

– Subsets of target and source.

UML 2.1.1 Figure 7.15

24 Metamodeling directed relationships in UML

Other directed relationships

• Chapter 7 (Classes):

– Subtypes of dependency: Abstraction,
Realization, Substitution, Usage.

– PackageMerge, PackageImport,
ElementImport.

• Chapter 8 (Components):

– ComponentRealization.

• Chapter 15 (State Machines)

– ProtocolConformance.

– But not Transition! Even though it is
defined as: “A transition is a directed
relationship between a source vertex
and a target vertex” (p. 568).

• Chapter 16 (Use Cases)

– Include, Extend.

• Chapter 17 (Auxiliary Constructs)

– InformationFlow, TemplateBinding.

• Chapter 18 (Profiles)

– ProfileApplication.

25 Metamodeling directed relationships in UML

The general case: DirectedRelationship

• In some cases, target and source multiplicity has been restricted from 1..* to 1.

• In most cases, navigability for the opposite of source has been added.

• Is this legal according to Liskov’s substitution principle? Yes.

26 Metamodeling directed relationships in UML

The case of one-way associations: dependency / directionality

• In the code:

– The source class knows the target class,

but not viceversa.

– Expressed in the model as a directed

relationship (a one-way association).

• Every one-way association induces a

dependency source � target.

– A one-way association is not a

dependency, but induces it.

• Again, what happens if rectangle A is

deleted?

– The arrows representing incoming

associations are deleted, too.

– Thus, rectangle A knew the arrows.

public class A { }

// A knows nobody

public class B extends A {

A myA;}

// B knows A

public class C extends A {

A myA;}

// C knows A

B C

A

myA myA

27 Metamodeling directed relationships in UML

Metamodel of associations

• Even though Association is a kind of Relationship, memberEnd is not a
subset of relatedElement, but of Namespace::member.

• Navigable ends are a subset of the association owned ends.

• In this case, navigability has not been added but restricted (Liskov? No.)

• Non-navigable ends know the association, but they don’t know that they
cannot navigate it!

• Directionality at M1 did not require strict navigability at M2.

28 Metamodeling directed relationships in UML

Conclusions

29 Metamodeling directed relationships in UML

Conclusions

• Graphical modeling languages:

– A graphical modeling language is composed of graphical elements.

– Graphical language elements that are connected know each other.

• OMG’s metamodeling levels:

– A model (M1) expresses the properties of a certain modeled reality (M0).

– A metamodel (M2) expresses the properties of a modeling language (M1).

– The metamodel (abstract syntax) should only express the legal combination of
modeling elements and the relationships among them.

– Should the metamodel express the properties of the semantic domain where the
modeling language is used? Yes, but the directionality of generalization is
sufficiently represented by two meta-associations. This should be enough.

– Introducing directionality in these meta-associations mixes M2-M1-M0.

• Remember: “Note that tools operating on UML models are not prevented from
navigating associations from non-navigable ends”. Then why specify it?

• Should we conclude that the metamodel must not contain one-way meta-
associations?

30 Metamodeling directed relationships in UML

Questions?

