
Semantics of the Minimum Multiplicity in Ternary
Associations in UML

Gonzalo Génova, Juan Llorens, Paloma Martínez

Computer Science Department, Carlos III University of Madrid,
Avda. Universidad 30, 28911 Leganés (Madrid), Spain

{ ggenova, l l or ens, pmf } @i nf . uc3m. es
ht t p: / / www. i nf . uc3m. es/

Abstract. The concept of multiplicity in UML derives from that of cardinality
in entity-relationship modeling techniques. The UML documentation defines
this concept but at the same time acknowledges some lack of obviousness in the
specification of multiplicities for n-ary associations. This paper shows an
ambiguity in the definition given by UML documentation and proposes a
clarification to this definition, as well as a simple extension to the current
notation to represent other multiplicity constraints, such as participation
constraints, that are equally valuable in understanding n-ary associations.

Introduction

The entity-relationship model [4] has been widely used in structured analysis and
conceptual modeling, and it has evolved into object oriented class diagrams such as
those of the Unified Modeling Language [29]. This approach is easy to understand,
powerful to model real-world problems and readily translated into a database schema,
although other forms of implementation, such as object-oriented programming
languages, are not so simple and straight [23]. Both in entity-relationship diagrams
and in class diagrams the main constructs are the entity and the relationship among
entities (class and association, in UML terminology). In this sense, important authors
strongly reject the entity-relationship approach, since they consider that the very
distinction between entity and relationship suffers of lack of precision [6, 7].

For many analysts, one of the most problematic aspects of systems modeling is the
correct understanding of ternary associations and, in general, n-ary associations (we
use this term, as usual, to refer to associations with three or more roles). Ternary
associations represent often a complex situation which modelers find specially
difficult to understand, regarding both structural and behavioral modeling. From the
structural point of view, these difficulties are very often interlinked with the fourth
and fifth normal form issue [13]. From the behavioral point of view, atomic
interactions that involve more than two objects are another source of conceptual
complexity (these interactions are denoted by some authors as "joint actions" or
"atomic multiway synchronous interactions" [12]).

The cardinality of a relationship (multiplicity of an association, in UML
terminology) is considered by some experts as the most structural property of a model

[17]. However, the multiplicity values typically specified for n-ary associations
provide only partial understanding of the object structure. Additional conditions may
be included within written descriptions that accompany the models, but a better
integration, as far as it is possible, is always desirable. Worst of all, often the very
meaning of the multiplicities is badly understood. As we will see, the multiplicity of
binary associations is rather simple to specify and understand in UML, but,
unfortunately, this is not the case for n-ary associations, for which UML has defined
incomplete and unclear multiplicities.

The purpose of this paper is, on the one hand, to clarify the meaning of n-ary
multiplicity values, which is acknowledged by UML to be not very obvious [29, p. 3-
73], and on the other hand to propose an extension to the notation of UML n-ary
multiplicities, one extension that provides more complete and precise definitions for
n-ary associations with the smallest notational burden. Although our main concern is
UML, the core of our exposition is general enough to be useful in other methods
based on the entity-relationship approach. This work forms part of a more general
research that is aimed towards a better understanding of the concept of "association"
among classes. We hope that this better understanding will improve the models
constructed both by novel and expert analysts.

The remainder of this paper is organized as follows. Section 1 recalls some
definitions from UML: multiplicity, association, and multiplicity for binary and n-ary
associations. Section 2 searches the roots of these definitions in data modeling
techniques that derive mainly from the entity-relationship approach of Chen. Section
3 reveals an ambiguity, or at least uncertainty, in the definition of UML minimum
multiplicity for n-ary associations; three alternative interpretations are presented, each
one with its own problems and unexpected consequences. Finally, section 4 tries to
understand the root of these problems by paying more attention to the participation
constraint; a notation compatible with the three alternative interpretations of section 3
is proposed to recover a place for this constraint in n-ary associations in UML, and its
semantics is carefully explained.

1 Definition of Multiplicity in UML

The Unified Modeling Language defines "multiplicity" as the range of allowable
cardinalities that a set may assume [29, p. 3-68], where "cardinality" is the number of
elements in a set [29, p. B-4]. A cardinality is a specific value, whereas multiplicity is
the range of possible cardinalities a set may hold [22, p. 182]. Multiplicity
specifications are given mostly for association ends, but they are used also for other
purposes like repetitions of messages, etc. An "association" is the semantic
relationship between two or more classes that involves connections (links) among
their instances [22, p. 152; 29, p. 2-19]. These are the definitions within UML,
although many authors, probably coming from the field of entity-relationship
modeling, will use the term cardinality to mean multiplicity, and the term relationship
to mean association. In this paper we use one terminology or the other depending on
the context.

A binary association is drawn in UML as a solid path connecting two class
symbols. The multiplicity of a binary association, placed on an association end (the
target end), specifies the number of target instances that may be associated with a
single source instance across the given association, in other words, how many objects
of one class (the target class) may be associated with a given single object from the
other class (the source class) [22, p. 348; 29, p. 2-22].

The classical example in Figure 1 illustrates binary multiplicity. Each instance of
Person may work for none or one instance of Company (0..1), while each company
may be linked to one or more persons (1..*). For those readers less familiarized with
UML notation, the symbol (*) stands for "many" (unbounded number), and the ranges
(1..1) and (0..*) may be abbreviated respectively as (1) and (*).

Person Companyworks for
1..* 0..1

Fig. 1. A classical example of binary association with the expression of multiplicities

(Note that this association is intended to mean only the present situation: “a person
is working for 0..1 companies” , but not "a person has worked or works for 0..1
companies". In this paper we are going to avoid all issues of history, since this
concern would depart us from our main objective.)

An n-ary association is an association among three or more classes, shown as a
diamond with a path from the diamond to each participant class. Each instance of the
association is an n-tuple of values from the respective classes (a 3-tuple or triplet, in
the case of ternary associations). Multiplicity for n-ary associations may be specified,
but is less obvious than binary multiplicity. The multiplicity on an association end
represents the potential number of values at the end, when the values at the other n-1
ends are fixed [29, p. 3-73]. This definition is compatible with binary multiplicity [22,
p. 350].

The example in Figure 2, taken from the UML Reference Manual [22, p. 351] and
the UML Standard [29, p. 3-74], shows the record of a team in each season with a
particular goalkeeper. It is assumed that the goalkeeper might be traded during the
season and can appear with different teams. That is, for a given player and year, there
may be many teams, and so on for the other multiplicities stated in the diagram.

Team

Year

Player
* *

*

Fig. 2. Ternary association with many-many-many multiplicities

However, as we shall see, a subtle paradox hides behind the apparent clearness of
these multiplicity specifications.

2 Definition of Cardinality in Entity-Relationship Models

The definition of multiplicity of an association in UML follows that of OMT [24],
which is generally acknowledged [2, 20] to derive from the definition of cardinality of
a relationship in the entity-relationship model [4]. In fact, Chen does not use the term
"cardinality" in his proposal: he uses the expressions "1:1 mapping", "1:n mapping"
and "m:n mapping", and he explains the meaning of each one, but he does not give
any formal definition of the concept of "type of mapping". Moreover, he draws an
example of an M:N:P ternary relationship SUPPLIER-PROJECT-PART, but he does
not explain at all how these "cardinalities" are to be understood. Note, too, that he
deals only with "maximum cardinality", in a close relation to the concept of
"functional dependency".

Many data modeling techniques have followed, formalized and extended the Chen
style of cardinality values [8, 10, 18, 21, 28]. Others, following the French method
Merise [27], invert the placement of cardinality values [1, 3, 5]. It has been well
established that the semantics of both conventions are equivalent for binary
relationships, but differ substantially when they are applied to relationships of higher
degree [2, 19, 20, 26]. This issue will be dealt with more detail in section 4.

In some of these methods we find the explicit and useful distinction between the
concepts of a cardinality constraint and a participation constraint [10, 18, 26]:

• A cardinality constraint specifies the number of relationship instances in which
an entity can participate. They are in the form of 1:1, 1:N, or M:N, to express
the two constraints in a binary relationship, and 1:1:1, 1:1:N, 1:N:M, or M:N:P,
to express the three constraints in a ternary relationship. These constraints
correspond to maximum cardinality constraints in some notations. In the Chen
style, the entity with a cardinality constraint of 1 is functionally dependent on
the other entity (or entities, in an n-ary relationship). In the example in Figure 1,
Company is functionally dependent on Person.

• A participation constraint specifies whether an entity instance can exist without
participating in a relationship with another entity. This constraint corresponds to
minimum cardinality constraints in some notations. Total and partial
participation are the two types of participation, also denoted as mandatory and
optional participation. Mandatory participation exists when an entity instance
cannot exist without participating in a relationship with another entity instance.
Optional participation exists when the entity instance can exist without
participating in a relationship with another entity instance. In the example in
Figure 1, Company has mandatory participation, while Person has optional
participation.

Other authors define in a more general way a co-occurrence constraint, which
specifies how many objects (or n-tuples of objects) may co-occur in a relationship
with another object (or m-tuple of objects) [11]: for example, how many pairs
product-prize may co-occur with a particular pair seller-buyer in the 4-ary
relationship sale. This generalized concept of cardinality is studied more deeply in
section 4.

Some methods combine cardinality and participation constraints and represent
them using minimum and maximum constraints in the form of (min, max) notation.
This is the case of UML. However, the concept of minimum multiplicity is not
equivalent to the concept of participation constraint. For example, a minimum
multiplicity of 2 implies mandatory participation, but mandatory participation implies
only a minimum multiplicity of 1. Moreover, the potential multiplicities in UML
extend to any subset of nonnegative integers [22, p. 346], not only a single interval as
(2..*), not even to a comma-separated list of integer intervals as (1..3, 7..10, 15,
19..*): specifications of multiplicity like { prime numbers} or { squares of positive
integers} are also valid, although there is no standard notation for them. Nevertheless,
in UML as in other modeling techniques, the most usual multiplicities are (0..1),
(1..*), (0..*) and (1..*). We are going to restrict our analysis to these combinations of
multiplicity values.

3 Paradoxes and Ambiguities of Ternary Multiplicities

Let's recall the definition of UML multiplicity in an n-ary association: "the
multiplicity on an association end represents the potential number of values at the
end, when the values at the other n-1 ends are fixed". Now consider the ternary
association "A works in B using C", which is a classical example in the literature [20],
defined among employees, projects and skills: an employee works in a certain project
using a certain skill. Table 1 illustrates possible sets of instances for the three classes,
while Table 2 illustrates a possible set of instances (triplets) for the association.

Table 1. Three possible sets of instances for the three classes Employee, Project, Skill

Employee Project Skill
Albert Kitchen Welding
Benedict Laboratory Painting
Claire Basement Foreman

Table 2. Possible set of instances for the ternary association "works-in-using"

— works in — using —
Employee Project Skill
Albert Kitchen Welding
Albert Laboratory Welding
Benedict Kitchen Foreman
Benedict Basement Foreman
Claire Kitchen Painting

Figure 3 shows a diagram for this ternary association, with multiplicity constraints

that, according to the definition given above, are consistent with the values in Tables
1 and 2:

• Multiplicity for class Project in association "works-in-using" is 0..*, since an n-
tuple of instances of Employee-Skill may be linked to a minimum of 0 and an
unbounded maximum of instances of Project: tuple Albert-Welding is linked to
two different instances of Project, Kitchen and Laboratory, and the same for
Benedict-Foreman.

• Multiplicity for class Employee, also 0..*, is consistent as well: although there is
no pair Project-Skill linked to two different instances of Employee, the diagram
states that a tuple such as Claire-Laboratory-Welding, which would duplicate
the pair Laboratory-Welding, may be added to the existing set of tuples.

• Finally, multiplicity for class Skill, in this case 0..1, states that for each pair
Employee-Project there may be none or one skill: that is, an employee uses at
most one skill in each project, which is consistent with the given values, but the
constraint also forbids adding a tuple such as Claire-Kitchen-Welding unless the
tuple Claire-Kitchen-Painting is deleted first. In other words, Skill is
functionally dependent on Employee-Project.

Employee Project

Skill

works in
using

0..* 0..*

0..1

Fig. 3. The ternary association "works-in-using", according to the interpretation of potential
tuples

Now, everything seems working well… but that's not that easy. So far, in applying
the definition to this example we have considered only maximum multiplicity. Let's
concentrate now on minimum multiplicity, and we will see that there is some

ambiguity in its definition. We are going to propose and examine three different
interpretations of the phrase "each pair Employee-Project", inviting the reader to
check which one he or she has accepted until now, probably in an unconscious
manner. We will show that each one of these interpretations has also its own problems
and unexpected consequences. As far as we know, nobody has made this point
beforehand.

First interpretation (actual tuples). "Each pair Employee-Project" may be
understood as an "actually existing pair", or an actual pair, that is, a pair of instances
that are linked by some ternary link within the ternary association. Pairs Albert-
Kitchen and Benedict-Basement are actual pairs, since there are in fact some triplets
that contain them, while pairs Albert-Basement and Claire-Laboratory are not.

This interpretation of the rule seems rather intuitive, but… note that for an actual
pair Employee-Project there must be always at least one Skill: if it is an actual pair,
there is an actual triplet that contains it, therefore there is an instance of Skill that is
also in the triplet. There cannot be an actual pair that is not connected to a third
element, because a ternary link is by definition a triplet of values from the respective
classes; a ternary link has three "legs", and none of them may be empty: "limping"
links are not allowed.

So, in this interpretation, the minimum multiplicity is always at least 1, since the
value 0 has no sense. This "zero-forbidden effect" is not consistent with the frequent
assigning of minimum multiplicity 0 in ternary associations (and, first of all, with
UML documentation, as in the example in Figure 2). In fact, the diagram in Figure 3
would be incorrect, although it could be substituted by the one in Figure 4.

Employee Project

Skill

works in
using

1..* 1..*

1..1

Fig. 4. The ternary association "works-in-using", according to the interpretation of actual tuples

Second interpretation (potential tuples). "For each pair Employee-Project" may be
understood as a "merely possible pair", or a potential pair, that is, a pair of instances
that belongs to the Cartesian product of Employee and Project. There are three
employees and three projects, so there are nine potential pairs. For some of these
pairs, like Benedict-Basement or Claire-Kitchen, there is a related skill; for some
others, like Albert-Basement or Claire-Laboratory, there is none. So, minimum
multiplicity 0 is allowed in Tables 1 and 2, and the diagram in Figure 3 would be
correct and consistent with them.

But, what would be the meaning of minimum multiplicity 1? Consider multiplicity
1..1 assigned to class Skill, as in Figure 4. It would mean that, for each potential pair
Employee-Product, there might be one Skill, but not zero; that is, any potential pair
not linked to a skill would be forbidden. In other words, any potential pair must be
linked to at least one skill, and therefore any potential pair Employee-Product must
exist at least once within one triplet in the association: every employee must be linked
to every project at least once. This rule and the diagram in Figure 4 would not be
consistent with the values in Tables 1 and 2, since we would need the full Cartesian
product Employee-Product to be present in Table 2 (in fact, we should have exactly
nine lines and no more, due to maximum multiplicity 1 of Skill).

So, in this interpretation, a minimum multiplicity 1 assigned to one class forces all
potential pairs of instances of the remaining classes to actually exist within some
triplet. This would be a "bouncing effect of the one" that is probably unexpected by
most modelers. Nevertheless, this interpretation seems valid, as it is implicitly in
agreement with UML documentation and some works on the formalization of
multiplicities [20].

Third interpretation (limping links). We could try an entirely different kind of
interpretation, by means of allowing the existence of limping links, that is, ternary
links that link only two instances and leave a blank for the third one. Thus, we would
read the multiplicity for class Skill in Figure 3 as "each actual pair Employee-Project
may be linked to none or one instance of Skill", that is, each link would be actually
either a pair Employee-Project (belonging to a hidden binary association) or a triplet
Employee-Project-Skill (belonging to the true ternary association). On the contrary, if
multiplicity were 1..1, then limping links would not be allowed on the side of class
Skill: every actual combination of employee and project should have a skill linked to
it. Within this interpretation, the diagram in Figure 3 would be equivalent to the one
in Figure 5, in which the limping links have been removed from the ternary
association, and are represented in a superimposed explicit binary association (this
could be further done with the other two zero-multiplicities).

Employee Project

Skill

works in
using

0..* 0..*

1..1

0..* 0..*

Fig. 5. The ternary association "works-in-using", according to the interpretation of limping
links, in which the limping links on the side of Skill are shown as an explicit binary association

In this interpretation, the ternary association symbol is used as an abbreviated
form to represent a genuine ternary association together with a hidden binary
association. Probably many modelers use the ternary symbol as if it were to mean
this, but, in general, the procedure of merging a binary association with a ternary
association by using limping links is not advisable. On the other hand, UML states
that each instance of an n-ary association is an n-tuple of values from the respective
classes (recall section 1 of this paper).

The limping links interpretation for incomplete associations is a variation of the
actual pairs interpretation, in which minimum multiplicity 0 means that a lack of
information is allowed. Nevertheless, there are some difficulties left: How many legs
may be lacking in an n-ary link? One, two, up to n-2? How is the maximum
multiplicity constraint to be interpreted when a leg is lacking on an opposite end?

So, this interpretation may seem simple and useful at first glance, but there are still
some points that are not at all clear, first of all the very definition of n-ary association
in UML. These unsolved semantic difficulties are enough, in our opinion, to discard
the concept of a limping link as a misleading one, in spite of its apparent advantages,
in favor of the more rigorous approach of the potential pairs interpretation. In
consequence, in the rest of this paper we adopt this interpretation for clearness,
although the issues addressed are up to a point independent of this choice.

4 A Place for the Par ticipation Constraint

We have seen three different interpretations that could solve the ambiguity in the
definition of minimum multiplicity of n-ary associations in UML. The first one,
actual pairs, implies that minimum multiplicity must be always 1, which is not
consistent with documentation and practice; the second one, potential pairs, seems
correct but has a strange effect when the value is 1; the third one, limping links, is
semantically weak and contradicts the definition of n-ary association. Why is
minimum multiplicity in n-ary associations so elusive?

McAllister offers a good formalization of the concept of cardinality (or
multiplicity, in UML terminology) [20]. Being a and b two non-null, non-overlapping
sets of roles in an n-ary relationship R, the cardinality C(a, b)=(min, max) specifies
that any given set of entity instances of a must be associated by R with between min
and max unique sets of entity instances for b (for simplicity, we restrict ourselves to
the simplest form of cardinality, a single integer interval, although this does not affect
the reasoning). Note that this corresponds to the co-occurrence constraint defined
above. In the example of Figure 3, if a = { Employee, Skill} and b = { Project} , then
C(a, b) = (0..*). McAllister demonstrates that the total number of cardinality values
that may be defined in a relationship with N roles is given by 3N-2N+1+1, and applies
this calculation for N from 2 to 5, giving the results in Table 3.

Table 3. Total number of cardinality values that may be defined in a relationship with N roles

N = number of roles in R number of C(a, b) for R
2 2
3 12
4 50
5 180

As N increases, there is a rapid increase in the number of cardinality values that

should be analyzed if the nature of the relationship is to be fully understood. This may
be one factor why many data modeling practitioners encounter difficulties in dealing
with n-ary relationships, especially if only a small number of the applicable
cardinalities are considered for each such relationship.

For N = 3, a ternary relationship such as "works-for-using", the twelve values to be
considered are: the three Chen/UML style values, the three Merise values, and six
values for the three embedded (that is, implicit) binary relationships Employee-
Project, Employee-Skill and Project-Skill (remember they are not truly independent
relationships). McAllister further defines a set of rules for consistency checking, since
these values are not completely independent [20]. To fully understand the structure of
an n-ary relationship, the modeler should specify all these co-occurrence constraints,
but most of times it is enough with the N Chen values and the N Merise values (the
others being usually many-to-many [15]). When these values are specified as simple
(min, max) intervals, consistency between Chen and Merise values is determined by
ensuring that each min or max Chen value is less than or equal to the min or max
Merise values of the other classes [20]. This rule may be checked against the example
in Figure 6, which shows both sets of values: minChen for Skill is 0, which is equal to
minMerise for Employee (0) and less than minMerise for Project (1); maxChen for
Skill is 1, which is less than maxMerise for Employee (*) and maxMerise for Project
(*). If, besides Chen and Merise values, the other values are also important,
McAllister's tabular representation for relationship cardinality is a good choice; these
cardinality constraints that are difficult to express in traditional entity-relationship
models are also very naturally expressed using assertions [17] ("assertions" are
declarative specifications of what has to be true in the "stable state" of the system, that
is, outside of atomic operations; they are also referred to as "invariants").

0..* 1..*

0..*

Chen

Merise

Employee Project

Skill

works in
using

0..* 0..*

0..1

Fig. 6. The ternary association "works-in-using", showing both Chen and Merise multiplicity
values

We can better understand now the semantic problems of minimum multiplicity
considered above. Minimum multiplicity is associated with the participation
constraint, but in the case of a ternary association, in the Chen style, it does not mean
the participation of the class, but the participation of a pair of the other two classes. A
value 0 for Skill does not mean optional participation for Skill in the association, but
optional participation for instance pairs of Employee-Project in the association with
an instance of Skill. If this goes against intuition, all the more reason to be clarified.
In fact, the participation of each individual class remains unexpressed in the Chen
style, while the Merise style represents it adequately. On the other side, the functional
dependencies remain unexpressed in the Merise style, while they are represented by
maximum multiplicity 1 in the Chen style. This is probably the reason why OMT and
UML have chosen Chen instead of Merise, although functional dependency is not
inherently more important than participation.

Both Chen and Merise styles are correct and can describe the same association, but
they state different facts about the nature of the association. The facts represented by
each style are not specified when using the other, nor can they be derived from the
other (except in the case of binary associations, where they simply interchange their
placement). Therefore, if the two styles provide useful information to understand the
association, why not represent both in the same diagram? Figure 6 repeats the
example of Figure 3, but adding a set of Merise values close to the association
diamond. This values are consistent with the values in Tables 1 and 2, and add new
and useful semantics to the association: we note especially that class Project is the
only one that has mandatory participation (minMerise for Project is 1), that is, a
project cannot exist without being linked to a pair employee-skill, although there may
be many (potential) pairs employee-skill not linked to any project (minChen for
Project is 0); and we note also that class Skill may participate in multiple association
instances (maxMerise for Class is *), that is, a certain skill may be linked to many
different pairs employee-skill, although for each pair at most one skill can be used
(maxChen for Class is 1).

This notation may seem similar to that of replacing the ternary association by a
new entity and three binary associations that simulate the ternary association, as
shown in Figure 7. This new entity is usually referred to as intersection entity or
associative entity or gerund [26]. We note that the Merise values of multiplicity are
preserved in this transformation, and placed again close to the associative entity, but
all Chen values have been replaced by 1..1, since every instance of Work is linked to
one and only one instance of the other classes (this is the same as saying that every
ternary link has "three legs"). In other words, the semantics of functional
dependencies expressed by the ternary association are lost when simulating it with a
gerund, but the semantics of participation are preserved. There are other differences
between binary and ternary associations and, in general, binary representations of
ternary associations are not functional-dependency preserving [14, 16, 25].

Employee Project

Skill

Work
1..1 0..*

1..1

0..*

1..11..*

Fig. 7. The ternary association "works-in-using" substituted by the associative entity "Work".
Only Merise multiplicity values are preserved in the transformation

Conclusions

In this paper we have considered some semantic problems of minimum multiplicity in
n-ary associations, as it is currently expressed in UML; nevertheless, our ideas are
general enough to be applicable to other modeling techniques more or less based on
the entity-relationship approach. Minimum multiplicity is closely related to the
participation constraint, although in the case of n-ary associations it does not mean the
participation of the class in the association, but the participation of tuples of the other
n-1 classes. Moreover, we discovered that this latter participation is defined with
uncertainty, allowing three conflictive interpretations: participation of actual tuples,
participation of potential tuples, and participation with limping links.

The second interpretation seems more probable, as it is implicitly in agreement
with UML documentation, in spite of the bouncing effect of minimum multiplicity 1.
The Standard should clarify this question, without resigning itself to a lack of
obviousness in the definition. Besides, if this second interpretation were chosen, the

Standard should also warn, since this result is not at all intuitive, that a minimum
multiplicity 1 or greater assigned to one class forces all potential tuples of instances of
the remaining classes to actually exist within some n-tuple; therefore, minimum
multiplicity would be 0 in nearly every n-ary association.

The third interpretation, which is a variation of the first one, seems intuitive and
has also some pragmatic advantages, although it is in contradiction with the definition
of n-ary association in UML (maybe more with the letter than with the spirit). In
addition, it has some unsolved semantic difficulties that have lead us to discard it, at
least for the time being.

The eventual clarification of this point leaves another problem unresolved: the
participation of each class remains unexpressed in the Chen style of representing
multiplicities (which is also the UML style), while the Merise style shows it
adequately. Both Chen and Merise styles are correct, but they describe different
characteristics of the same association, which cannot be derived from each other in
the n-ary case, although they are related by a simple consistency rule.

Being both styles useful to understand the nature of associations, we propose a
simple extension to the notation of UML n-ary multiplicities that enables the
representation of both participation and functional dependency (that is, Merise and
Chen styles). Since this notation is compatible with the three alternative
interpretations of Chen multiplicities, its use does not avoid by itself the ambiguity of
the definition of multiplicity: they are independent problems. If this notation were
accepted, the Standard should also modify the metamodel accordingly, since it
foresees only one multiplicity specification in the AssociationEnd metaclass. If this
were not the case, it could be at least recognized that Chen multiplicities are not the
only sensible co-occurrence constraints that may be defined in an n-ary association.

Understanding n-ary associations is a difficult problem in itself. If the rules of the
language used to represent them are not clear, this task may become inaccessible. If
the interpretation of n-ary associations is uncertain, straight communication among
modelers becomes impossible. If the semantic implications of a model are ambiguous,
implementers will have to take decisions that do not correspond to them, and possibly
wrong decisions. These reasons are more than enough to expect a more precise
definition of UML on this topics.

Acknowledgements

The authors would like to thank Vicente Palacios and José Miguel Fuentes for his
frequent conversations on the issues discussed in this paper; Jorge Morato for his
stylistic corrections on the first draft; Ana María Iglesias, Elena Castro and Dolores
Cuadra for the useful bibliographic material provided for this research, and criticism
on the first draft; and Guy Genilloud for his many suggestions to improve this paper.

References

1. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design: an Entity-Relationship
Approach. Benjamin-Cummings (1992)

2. Castellani, X., Habrias, H., Perrin, Ph.: "A Synthesis on the Definitions and Notations of
Cardinalities of Relationships", Journal of Object Oriented Programming, 13(6):32-35
(2000)

3. Ceri, S., Fraternali, P.: Designing Database Applications with Objects and Rules: the IDEA
Methodology. Addison-Wesley (1997)

4. Chen, P.P.: "The Entity-Relationship Model", ACM Transactions on Database Systems,
1(1):9-36 (1976)

5. Coad, P., Yourdon, E.: Object-Oriented Analysis, 2nd ed. Prentice-Hall (1991)
6. Codd, E.F.: The Relational Model for Database Managament: Version 2. Addison-Wesley

(1990)
7. Date, C.J.: An Introduction to Database Systems, 6th ed. Addison-Wesley (1995)
8. De Miguel, A., Piattini, M., Marcos, E.: Diseño de bases de datos relacionales. Ra-Ma,

Madrid (1999)
9. Dullea, J., Song, I.-Y.: "An Analysis of Structural Validity of Ternary Relationships in

Entity-Relationship Modeling", Proceedings of the 7th International Conference on
Information and Knowledge Management, 331-339, Washington, D.C., Nov. 3-7 (1998)

10. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 2nd ed. Benjamin-
Cummings (1994)

11. Embley, D.W.: Object Database Development: Concepts and Principles. Addison-Wesley
(1998)

12. Genilloud, G.: "Common Domain Objects in the RM-ODP Viewpoints", Computer
Standards and Interfaces, 19(7):361-374 (1998)

13. Hitchman, S.: "Ternary Relationships--To Three or not to Three, Is there a Question?"
European Journal of Information Systems, 8:224-231 (1999)

14. Jones, T.H., Song, I.-Y.: "Binary Representations of Ternary Relationships in ER
Conceptual Modeling", 14th International Conference on Object-oriented and Entity-
Relationship Approach, pp. 216-225, Gold Coast, Australia, Dec. 12-15 (1995)

15. Jones, T.H., Song, I.-Y.: "Analysis of Binary/Ternary Cardinality Combinations in Entity-
Relationship Modeling", Data & Knowledge Engineering, 19(1):39-64 (1996)

16. Jones, T.H., Song, I.-Y.: "Binary Equivalents of Ternary Relationships in Entity-
Relationship Modeling: a Logical Decomposition Approach", Journal of Database
Management, April-June:12-19 (2000)

17. Kilov, H., Ross, J.: Information Modeling: An Object-Oriented Approach. Prentice Hall
(1994)

18. Martin, J., Odell, J.: Object-Oriented Methods: A Foundation. Prentice Hall (1995)
19. Martínez, P., Nieto, C., Cuadra, D., De Miguel, A.: "Profundizando en la semántica de las

cardinalidades en el modelo E/R extendido", IV Jornadas de Ingeniería del Software y
Bases de Datos, pp. 53-54, Cáceres, Spain, Nov. 24-26 (1999)

20. McAllister, A.: "Modeling N-ary Data Relationships in CASE Environments", Proceedings
of the 7th International Workshop on Computer Aided Software Engineering, pp. 132-140,
Toronto, Canada (1995)

21. Metodología de planificación y desarrollo de sistemas de información, METRICA versión
2. Tomo 3: Guía de técnicas. Instituto Nacional de Administración Pública, España. Madrid
(1993)

22. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference Manual.
Addison-Wesley (1998)

23. Rumbaugh, J.: "Relations as Semantic Constructs in an Object-Oriented Language",
Proceedings of the ACM Conference on Object-Oriented Programming: Systems,
Languages and Applications, pp. 466-481, Orlando, Florida (1987)

24. Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., Lorensen, W.: Object-Oriented
Modeling and Design. Prentice-Hall International (1991)

25. Song, I.-Y., Jones, T.H.: "Analysis of binary relationships within ternary relationships in
ER Modeling", Proceedings of the 12th International Conference on Entity-Relationship
Approach, pp. 265-276, Dallas, Texas, Dec. 15-17 (1993)

26. Song, I.-Y., Evans, M., Park, E.K.: "A Comparative Analysis of Entity-Relationship
Diagrams", Journal of Computer and Software Engineering, 3(4):427-459 (1995)

27. Tardieu, H., Rochfeld, A., Coletti, R.: La méthode MERISE. Tome 1: Principles et outils.
Les Editions d'Organisation, Paris (1983, 1985)

28. Teorey, T.J.: Database Modeling and Design, 3rd ed, Morgan Kaufmann Publishers (1999)
29. Object Management Group: Unified Modeling Language Specification, Version 1-3, (June

1999)

