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Abstract. The concept of multiplicity in UML derives from that of cardinality 
in entity-relationship modeling techniques. The UML documentation defines 
this concept but at the same time acknowledges some lack of obviousness in the 
specification of multiplicities for n-ary associations. This paper shows an 
ambiguity in the definition given by UML documentation and proposes a 
clarification to this definition, as well as a simple extension to the current 
notation to represent other multiplicity constraints, such as participation 
constraints, that are equally valuable in understanding n-ary associations. 

Introduction 

The entity-relationship model [4] has been widely used in structured analysis and 
conceptual modeling, and it has evolved into object oriented class diagrams such as 
those of the Unified Modeling Language [29]. This approach is easy to understand, 
powerful to model real-world problems and readily translated into a database schema, 
although other forms of implementation, such as object-oriented programming 
languages, are not so simple and straight [23]. Both in entity-relationship diagrams 
and in class diagrams the main constructs are the entity and the relationship among 
entities (class and association, in UML terminology). In this sense, important authors 
strongly reject the entity-relationship approach, since they consider that the very 
distinction between entity and relationship suffers of lack of precision [6, 7]. 

For many analysts, one of the most problematic aspects of systems modeling is the 
correct understanding of ternary associations and, in general, n-ary associations (we 
use this term, as usual, to refer to associations with three or more roles). Ternary 
associations represent often a complex situation which modelers find specially 
difficult to understand, regarding both structural and behavioral modeling. From the 
structural point of view, these difficulties are very often interlinked with the fourth 
and fifth normal form issue [13]. From the behavioral point of view, atomic 
interactions that involve more than two objects are another source of conceptual 
complexity (these interactions are denoted by some authors as "joint actions" or 
"atomic multiway synchronous interactions" [12]). 

The cardinality of a relationship (multiplicity of an association, in UML 
terminology) is considered by some experts as the most structural property of a model 



[17]. However, the multiplicity values typically specified for n-ary associations 
provide only partial understanding of the object structure. Additional conditions may 
be included within written descriptions that accompany the models, but a better 
integration, as far as it is possible, is always desirable. Worst of all, often the very 
meaning of the multiplicities is badly understood. As we will see, the multiplicity of 
binary associations is rather simple to specify and understand in UML, but, 
unfortunately, this is not the case for n-ary associations, for which UML has defined 
incomplete and unclear multiplicities. 

The purpose of this paper is, on the one hand, to clarify the meaning of n-ary 
multiplicity values, which is acknowledged by UML to be not very obvious [29, p. 3-
73], and on the other hand to propose an extension to the notation of UML n-ary 
multiplicities, one extension that provides more complete and precise definitions for 
n-ary associations with the smallest notational burden. Although our main concern is 
UML, the core of our exposition is general enough to be useful in other methods 
based on the entity-relationship approach. This work forms part of a more general 
research that is aimed towards a better understanding of the concept of "association" 
among classes. We hope that this better understanding will improve the models 
constructed both by novel and expert analysts.  

The remainder of this paper is organized as follows. Section 1 recalls some 
definitions from UML: multiplicity, association, and multiplicity for binary and n-ary 
associations. Section 2 searches the roots of these definitions in data modeling 
techniques that derive mainly from the entity-relationship approach of Chen. Section 
3 reveals an ambiguity, or at least uncertainty, in the definition of UML minimum 
multiplicity for n-ary associations; three alternative interpretations are presented, each 
one with its own problems and unexpected consequences. Finally, section 4 tries to 
understand the root of these problems by paying more attention to the participation 
constraint; a notation compatible with the three alternative interpretations of section 3 
is proposed to recover a place for this constraint in n-ary associations in UML, and its 
semantics is carefully explained. 

1 Definition of Multiplicity in UML 

The Unified Modeling Language defines "multiplicity" as the range of allowable 
cardinalities that a set may assume [29, p. 3-68], where "cardinality" is the number of 
elements in a set [29, p. B-4]. A cardinality is a specific value, whereas multiplicity is 
the range of possible cardinalities a set may hold [22, p. 182]. Multiplicity 
specifications are given mostly for association ends, but they are used also for other 
purposes like repetitions of messages, etc. An "association" is the semantic 
relationship between two or more classes that involves connections (links) among 
their instances [22, p. 152; 29, p. 2-19]. These are the definitions within UML, 
although many authors, probably coming from the field of entity-relationship 
modeling, will use the term cardinality to mean multiplicity, and the term relationship 
to mean association. In this paper we use one terminology or the other depending on 
the context. 



A binary association is drawn in UML as a solid path connecting two class 
symbols. The multiplicity of a binary association, placed on an association end (the 
target end), specifies the number of target instances that may be associated with a 
single source instance across the given association, in other words, how many objects 
of one class (the target class) may be associated with a given single object from the 
other class (the source class) [22, p. 348; 29, p. 2-22].  

The classical example in Figure 1 illustrates binary multiplicity. Each instance of 
Person may work for none or one instance of Company (0..1), while each company 
may be linked to one or more persons (1..*). For those readers less familiarized with 
UML notation, the symbol (*) stands for "many" (unbounded number), and the ranges 
(1..1) and (0..*) may be abbreviated respectively as (1) and (*). 

Person Companyworks for
1..* 0..1

 

Fig. 1. A classical example of binary association with the expression of multiplicities 

(Note that this association is intended to mean only the present situation: “a person 
is working for 0..1 companies” , but not "a person has worked or works for 0..1 
companies". In this paper we are going to avoid all issues of history, since this 
concern would depart us from our main objective.) 

An n-ary association is an association among three or more classes, shown as a 
diamond with a path from the diamond to each participant class. Each instance of the 
association is an n-tuple of values from the respective classes (a 3-tuple or triplet, in 
the case of ternary associations). Multiplicity for n-ary associations may be specified, 
but is less obvious than binary multiplicity. The multiplicity on an association end 
represents the potential number of values at the end, when the values at the other n-1 
ends are fixed [29, p. 3-73]. This definition is compatible with binary multiplicity [22, 
p. 350]. 

The example in Figure 2, taken from the UML Reference Manual [22, p. 351] and 
the UML Standard [29, p. 3-74], shows the record of a team in each season with a 
particular goalkeeper. It is assumed that the goalkeeper might be traded during the 
season and can appear with different teams. That is, for a given player and year, there 
may be many teams, and so on for the other multiplicities stated in the diagram. 



Team

Year

Player
* *

*

 

Fig. 2. Ternary association with many-many-many multiplicities 

However, as we shall see, a subtle paradox hides behind the apparent clearness of 
these multiplicity specifications. 

2 Definition of Cardinality in Entity-Relationship Models 

The definition of multiplicity of an association in UML follows that of OMT [24], 
which is generally acknowledged [2, 20] to derive from the definition of cardinality of 
a relationship in the entity-relationship model [4]. In fact, Chen does not use the term 
"cardinality" in his proposal: he uses the expressions "1:1 mapping", "1:n mapping" 
and "m:n mapping", and he explains the meaning of each one, but he does not give 
any formal definition of the concept of "type of mapping". Moreover, he draws an 
example of an M:N:P ternary relationship SUPPLIER-PROJECT-PART, but he does 
not explain at all how these "cardinalities" are to be understood. Note, too, that he 
deals only with "maximum cardinality", in a close relation to the concept of 
"functional dependency". 

Many data modeling techniques have followed, formalized and extended the Chen 
style of cardinality values [8, 10, 18, 21, 28]. Others, following the French method 
Merise [27], invert the placement of cardinality values [1, 3, 5]. It has been well 
established that the semantics of both conventions are equivalent for binary 
relationships, but differ substantially when they are applied to relationships of higher 
degree [2, 19, 20, 26]. This issue will be dealt with more detail in section 4. 

In some of these methods we find the explicit and useful distinction between the 
concepts of a cardinality constraint and a participation constraint [10, 18, 26]: 

• A cardinality constraint specifies the number of relationship instances in which 
an entity can participate. They are in the form of 1:1, 1:N, or M:N, to express 
the two constraints in a binary relationship, and 1:1:1, 1:1:N, 1:N:M, or M:N:P, 
to express the three constraints in a ternary relationship. These constraints 
correspond to maximum cardinality constraints in some notations. In the Chen 
style, the entity with a cardinality constraint of 1 is functionally dependent on 
the other entity (or entities, in an n-ary relationship). In the example in Figure 1, 
Company is functionally dependent on Person. 



• A participation constraint specifies whether an entity instance can exist without 
participating in a relationship with another entity. This constraint corresponds to 
minimum cardinality constraints in some notations. Total and partial 
participation are the two types of participation, also denoted as mandatory and 
optional participation. Mandatory participation exists when an entity instance 
cannot exist without participating in a relationship with another entity instance. 
Optional participation exists when the entity instance can exist without 
participating in a relationship with another entity instance. In the example in 
Figure 1, Company has mandatory participation, while Person has optional 
participation. 

Other authors define in a more general way a co-occurrence constraint, which 
specifies how many objects (or n-tuples of objects) may co-occur in a relationship 
with another object (or m-tuple of objects) [11]: for example, how many pairs 
product-prize may co-occur with a particular pair seller-buyer in the 4-ary 
relationship sale. This generalized concept of cardinality is studied more deeply in 
section 4. 

Some methods combine cardinality and participation constraints and represent 
them using minimum and maximum constraints in the form of (min, max) notation. 
This is the case of UML. However, the concept of minimum multiplicity is not 
equivalent to the concept of participation constraint. For example, a minimum 
multiplicity of 2 implies mandatory participation, but mandatory participation implies 
only a minimum multiplicity of 1. Moreover, the potential multiplicities in UML 
extend to any subset of nonnegative integers [22, p. 346], not only a single interval as 
(2..*), not even to a comma-separated list of integer intervals as (1..3, 7..10, 15, 
19..*): specifications of multiplicity like { prime numbers}  or { squares of positive 
integers}  are also valid, although there is no standard notation for them. Nevertheless, 
in UML as in other modeling techniques, the most usual multiplicities are (0..1), 
(1..*), (0..*) and (1..*). We are going to restrict our analysis to these combinations of 
multiplicity values. 

3 Paradoxes and Ambiguities of Ternary Multiplicities 

Let's recall the definition of UML multiplicity in an n-ary association: "the 
multiplicity on an association end represents the potential number of values at the 
end, when the values at the other n-1 ends are fixed". Now consider the ternary 
association "A works in B using C", which is a classical example in the literature [20], 
defined among employees, projects and skills: an employee works in a certain project 
using a certain skill. Table 1 illustrates possible sets of instances for the three classes, 
while Table 2 illustrates a possible set of instances (triplets) for the association. 

Table 1. Three possible sets of instances for the three classes Employee, Project, Skill 

Employee  Project  Skill 
Albert  Kitchen  Welding 
Benedict  Laboratory  Painting 
Claire  Basement  Foreman 



Table 2. Possible set of instances for the ternary association "works-in-using" 

— works in — using — 
Employee Project Skill 
Albert Kitchen Welding 
Albert Laboratory Welding 
Benedict Kitchen Foreman 
Benedict Basement Foreman 
Claire Kitchen Painting 

 
Figure 3 shows a diagram for this ternary association, with multiplicity constraints 

that, according to the definition given above, are consistent with the values in Tables 
1 and 2: 

• Multiplicity for class Project in association "works-in-using" is 0..*, since an n-
tuple of instances of Employee-Skill may be linked to a minimum of 0 and an 
unbounded maximum of instances of Project: tuple Albert-Welding is linked to 
two different instances of Project, Kitchen and Laboratory, and the same for 
Benedict-Foreman. 

• Multiplicity for class Employee, also 0..*, is consistent as well: although there is 
no pair Project-Skill linked to two different instances of Employee, the diagram 
states that a tuple such as Claire-Laboratory-Welding, which would duplicate 
the pair Laboratory-Welding, may be added to the existing set of tuples. 

• Finally, multiplicity for class Skill, in this case 0..1, states that for each pair 
Employee-Project there may be none or one skill: that is, an employee uses at 
most one skill in each project, which is consistent with the given values, but the 
constraint also forbids adding a tuple such as Claire-Kitchen-Welding unless the 
tuple Claire-Kitchen-Painting is deleted first. In other words, Skill is 
functionally dependent on Employee-Project. 

 

Employee Project

Skill

works in
using

0..* 0..*

0..1

 

Fig. 3. The ternary association "works-in-using", according to the interpretation of potential 
tuples 

Now, everything seems working well… but that's not that easy. So far, in applying 
the definition to this example we have considered only maximum multiplicity. Let's 
concentrate now on minimum multiplicity, and we will see that there is some 



ambiguity in its definition. We are going to propose and examine three different 
interpretations of the phrase "each pair Employee-Project", inviting the reader to 
check which one he or she has accepted until now, probably in an unconscious 
manner. We will show that each one of these interpretations has also its own problems 
and unexpected consequences. As far as we know, nobody has made this point 
beforehand. 
 
First interpretation (actual tuples). "Each pair Employee-Project" may be 
understood as an "actually existing pair", or an actual pair, that is, a pair of instances 
that are linked by some ternary link within the ternary association. Pairs Albert-
Kitchen and Benedict-Basement are actual pairs, since there are in fact some triplets 
that contain them, while pairs Albert-Basement and Claire-Laboratory are not.  

This interpretation of the rule seems rather intuitive, but… note that for an actual 
pair Employee-Project there must be always at least one Skill: if it is an actual pair, 
there is an actual triplet that contains it, therefore there is an instance of Skill that is 
also in the triplet. There cannot be an actual pair that is not connected to a third 
element, because a ternary link is by definition a triplet of values from the respective 
classes; a ternary link has three "legs", and none of them may be empty: "limping" 
links are not allowed.  

So, in this interpretation, the minimum multiplicity is always at least 1, since the 
value 0 has no sense. This "zero-forbidden effect" is not consistent with the frequent 
assigning of minimum multiplicity 0 in ternary associations (and, first of all, with 
UML documentation, as in the example in Figure 2). In fact, the diagram in Figure 3 
would be incorrect, although it could be substituted by the one in Figure 4. 

 

Employee Project

Skill

works in
using

1..* 1..*

1..1

 

Fig. 4. The ternary association "works-in-using", according to the interpretation of actual tuples 

Second interpretation (potential tuples). "For each pair Employee-Project" may be 
understood as a "merely possible pair", or a potential pair, that is, a pair of instances 
that belongs to the Cartesian product of Employee and Project. There are three 
employees and three projects, so there are nine potential pairs. For some of these 
pairs, like Benedict-Basement or Claire-Kitchen, there is a related skill; for some 
others, like Albert-Basement or Claire-Laboratory, there is none. So, minimum 
multiplicity 0 is allowed in Tables 1 and 2, and the diagram in Figure 3 would be 
correct and consistent with them.  



But, what would be the meaning of minimum multiplicity 1? Consider multiplicity 
1..1 assigned to class Skill, as in Figure 4. It would mean that, for each potential pair 
Employee-Product, there might be one Skill, but not zero; that is, any potential pair 
not linked to a skill would be forbidden. In other words, any potential pair must be 
linked to at least one skill, and therefore any potential pair Employee-Product must 
exist at least once within one triplet in the association: every employee must be linked 
to every project at least once. This rule and the diagram in Figure 4 would not be 
consistent with the values in Tables 1 and 2, since we would need the full Cartesian 
product Employee-Product to be present in Table 2 (in fact, we should have exactly 
nine lines and no more, due to maximum multiplicity 1 of Skill).  

So, in this interpretation, a minimum multiplicity 1 assigned to one class forces all 
potential pairs of instances of the remaining classes to actually exist within some 
triplet. This would be a "bouncing effect of the one" that is probably unexpected by 
most modelers. Nevertheless, this interpretation seems valid, as it is implicitly in 
agreement with UML documentation and some works on the formalization of 
multiplicities [20]. 

 
Third interpretation (limping links). We could try an entirely different kind of 
interpretation, by means of allowing the existence of limping links, that is, ternary 
links that link only two instances and leave a blank for the third one. Thus, we would 
read the multiplicity for class Skill in Figure 3 as "each actual pair Employee-Project 
may be linked to none or one instance of Skill", that is, each link would be actually 
either a pair Employee-Project (belonging to a hidden binary association) or a triplet 
Employee-Project-Skill (belonging to the true ternary association). On the contrary, if 
multiplicity were 1..1, then limping links would not be allowed on the side of class 
Skill: every actual combination of employee and project should have a skill linked to 
it. Within this interpretation, the diagram in Figure 3 would be equivalent to the one 
in Figure 5, in which the limping links have been removed from the ternary 
association, and are represented in a superimposed explicit binary association (this 
could be further done with the other two zero-multiplicities).  

 



Employee Project

Skill

works in
using

0..* 0..*

1..1

0..* 0..*

 

Fig. 5. The ternary association "works-in-using", according to the interpretation of limping 
links, in which the limping links on the side of Skill are shown as an explicit binary association 

In this interpretation, the ternary association symbol is used as an abbreviated 
form to represent a genuine ternary association together with a hidden binary 
association. Probably many modelers use the ternary symbol as if it were to mean 
this, but, in general, the procedure of merging a binary association with a ternary 
association by using limping links is not advisable. On the other hand, UML states 
that each instance of an n-ary association is an n-tuple of values from the respective 
classes (recall section 1 of this paper).  

The limping links interpretation for incomplete associations is a variation of the 
actual pairs interpretation, in which minimum multiplicity 0 means that a lack of 
information is allowed. Nevertheless, there are some difficulties left: How many legs 
may be lacking in an n-ary link? One, two, up to n-2? How is the maximum 
multiplicity constraint to be interpreted when a leg is lacking on an opposite end?  

So, this interpretation may seem simple and useful at first glance, but there are still 
some points that are not at all clear, first of all the very definition of n-ary association 
in UML. These unsolved semantic difficulties are enough, in our opinion, to discard 
the concept of a limping link as a misleading one, in spite of its apparent advantages, 
in favor of the more rigorous approach of the potential pairs interpretation. In 
consequence, in the rest of this paper we adopt this interpretation for clearness, 
although the issues addressed are up to a point independent of this choice. 

4 A Place for  the Par ticipation Constraint 

We have seen three different interpretations that could solve the ambiguity in the 
definition of minimum multiplicity of n-ary associations in UML. The first one, 
actual pairs, implies that minimum multiplicity must be always 1, which is not 
consistent with documentation and practice; the second one, potential pairs, seems 
correct but has a strange effect when the value is 1; the third one, limping links, is 
semantically weak and contradicts the definition of n-ary association. Why is 
minimum multiplicity in n-ary associations so elusive?  



McAllister offers a good formalization of the concept of cardinality (or 
multiplicity, in UML terminology) [20]. Being a and b two non-null, non-overlapping 
sets of roles in an n-ary relationship R, the cardinality C(a, b)=(min, max) specifies 
that any given set of entity instances of a must be associated by R with between min 
and max unique sets of entity instances for b (for simplicity, we restrict ourselves to 
the simplest form of cardinality, a single integer interval, although this does not affect 
the reasoning). Note that this corresponds to the co-occurrence constraint defined 
above. In the example of Figure 3, if a = { Employee, Skill}  and b = { Project} , then 
C(a, b) = (0..*). McAllister demonstrates that the total number of cardinality values 
that may be defined in a relationship with N roles is given by 3N-2N+1+1, and applies 
this calculation for N from 2 to 5, giving the results in Table 3. 

Table 3. Total number of cardinality values that may be defined in a relationship with N roles 

N = number  of roles in R number  of C(a, b) for  R 
2 2 
3 12 
4 50 
5 180 

 
As N increases, there is a rapid increase in the number of cardinality values that 

should be analyzed if the nature of the relationship is to be fully understood. This may 
be one factor why many data modeling practitioners encounter difficulties in dealing 
with n-ary relationships, especially if only a small number of the applicable 
cardinalities are considered for each such relationship. 

For N = 3, a ternary relationship such as "works-for-using", the twelve values to be 
considered are: the three Chen/UML style values, the three Merise values, and six 
values for the three embedded (that is, implicit) binary relationships Employee-
Project, Employee-Skill and Project-Skill (remember they are not truly independent 
relationships). McAllister further defines a set of rules for consistency checking, since 
these values are not completely independent [20]. To fully understand the structure of 
an n-ary relationship, the modeler should specify all these co-occurrence constraints, 
but most of times it is enough with the N Chen values and the N Merise values (the 
others being usually many-to-many [15]). When these values are specified as simple 
(min, max) intervals, consistency between Chen and Merise values is determined by 
ensuring that each min or max Chen value is less than or equal to the min or max 
Merise values of the other classes [20]. This rule may be checked against the example 
in Figure 6, which shows both sets of values: minChen for Skill is 0, which is equal to 
minMerise for Employee (0) and less than minMerise for Project (1); maxChen for 
Skill is 1, which is less than maxMerise for Employee (*) and maxMerise for Project 
(*). If, besides Chen and Merise values, the other values are also important, 
McAllister's tabular representation for relationship cardinality is a good choice; these 
cardinality constraints that are difficult to express in traditional entity-relationship 
models are also very naturally expressed using assertions [17] ("assertions" are 
declarative specifications of what has to be true in the "stable state" of the system, that 
is, outside of atomic operations; they are also referred to as "invariants"). 

 



0..* 1..*

0..*

Chen 
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Employee Project
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0..* 0..*

0..1

 

Fig. 6. The ternary association "works-in-using", showing both Chen and Merise multiplicity 
values 

We can better understand now the semantic problems of minimum multiplicity 
considered above. Minimum multiplicity is associated with the participation 
constraint, but in the case of a ternary association, in the Chen style, it does not mean 
the participation of the class, but the participation of a pair of the other two classes. A 
value 0 for Skill does not mean optional participation for Skill in the association, but 
optional participation for instance pairs of Employee-Project in the association with 
an instance of Skill. If this goes against intuition, all the more reason to be clarified. 
In fact, the participation of each individual class remains unexpressed in the Chen 
style, while the Merise style represents it adequately. On the other side, the functional 
dependencies remain unexpressed in the Merise style, while they are represented by 
maximum multiplicity 1 in the Chen style. This is probably the reason why OMT and 
UML have chosen Chen instead of Merise, although functional dependency is not 
inherently more important than participation.  

Both Chen and Merise styles are correct and can describe the same association, but 
they state different facts about the nature of the association. The facts represented by 
each style are not specified when using the other, nor can they be derived from the 
other (except in the case of binary associations, where they simply interchange their 
placement). Therefore, if the two styles provide useful information to understand the 
association, why not represent both in the same diagram? Figure 6 repeats the 
example of Figure 3, but adding a set of Merise values close to the association 
diamond. This values are consistent with the values in Tables 1 and 2, and add new 
and useful semantics to the association: we note especially that class Project is the 
only one that has mandatory participation (minMerise for Project is 1), that is, a 
project cannot exist without being linked to a pair employee-skill, although there may 
be many (potential) pairs employee-skill not linked to any project (minChen for 
Project is 0); and we note also that class Skill may participate in multiple association 
instances (maxMerise for Class is *), that is, a certain skill may be linked to many 
different pairs employee-skill, although for each pair at most one skill can be used 
(maxChen for Class is 1). 



This notation may seem similar to that of replacing the ternary association by a 
new entity and three binary associations that simulate the ternary association, as 
shown in Figure 7. This new entity is usually referred to as intersection entity or 
associative entity or gerund [26]. We note that the Merise values of multiplicity are 
preserved in this transformation, and placed again close to the associative entity, but 
all Chen values have been replaced by 1..1, since every instance of Work is linked to 
one and only one instance of the other classes (this is the same as saying that every 
ternary link has "three legs"). In other words, the semantics of functional 
dependencies expressed by the ternary association are lost when simulating it with a 
gerund, but the semantics of participation are preserved. There are other differences 
between binary and ternary associations and, in general, binary representations of 
ternary associations are not functional-dependency preserving [14, 16, 25]. 

Employee Project

Skill

Work
1..1 0..*

1..1

0..*

1..11..*

 

Fig. 7. The ternary association "works-in-using" substituted by the associative entity "Work". 
Only Merise multiplicity values are preserved in the transformation 

Conclusions 

In this paper we have considered some semantic problems of minimum multiplicity in 
n-ary associations, as it is currently expressed in UML; nevertheless, our ideas are 
general enough to be applicable to other modeling techniques more or less based on 
the entity-relationship approach. Minimum multiplicity is closely related to the 
participation constraint, although in the case of n-ary associations it does not mean the 
participation of the class in the association, but the participation of tuples of the other 
n-1 classes. Moreover, we discovered that this latter participation is defined with 
uncertainty, allowing three conflictive interpretations: participation of actual tuples, 
participation of potential tuples, and participation with limping links.  

The second interpretation seems more probable, as it is implicitly in agreement 
with UML documentation, in spite of the bouncing effect of minimum multiplicity 1. 
The Standard should clarify this question, without resigning itself to a lack of 
obviousness in the definition. Besides, if this second interpretation were chosen, the 



Standard should also warn, since this result is not at all intuitive, that a minimum 
multiplicity 1 or greater assigned to one class forces all potential tuples of instances of 
the remaining classes to actually exist within some n-tuple; therefore, minimum 
multiplicity would be 0 in nearly every n-ary association. 

The third interpretation, which is a variation of the first one, seems intuitive and 
has also some pragmatic advantages, although it is in contradiction with the definition 
of n-ary association in UML (maybe more with the letter than with the spirit). In 
addition, it has some unsolved semantic difficulties that have lead us to discard it, at 
least for the time being. 

The eventual clarification of this point leaves another problem unresolved: the 
participation of each class remains unexpressed in the Chen style of representing 
multiplicities (which is also the UML style), while the Merise style shows it 
adequately. Both Chen and Merise styles are correct, but they describe different 
characteristics of the same association, which cannot be derived from each other in 
the n-ary case, although they are related by a simple consistency rule.  

Being both styles useful to understand the nature of associations, we propose a 
simple extension to the notation of UML n-ary multiplicities that enables the 
representation of both participation and functional dependency (that is, Merise and 
Chen styles). Since this notation is compatible with the three alternative 
interpretations of Chen multiplicities, its use does not avoid by itself the ambiguity of 
the definition of multiplicity: they are independent problems. If this notation were 
accepted, the Standard should also modify the metamodel accordingly, since it 
foresees only one multiplicity specification in the AssociationEnd metaclass. If this 
were not the case, it could be at least recognized that Chen multiplicities are not the 
only sensible co-occurrence constraints that may be defined in an n-ary association. 

Understanding n-ary associations is a difficult problem in itself. If the rules of the 
language used to represent them are not clear, this task may become inaccessible. If 
the interpretation of n-ary associations is uncertain, straight communication among 
modelers becomes impossible. If the semantic implications of a model are ambiguous, 
implementers will have to take decisions that do not correspond to them, and possibly 
wrong decisions. These reasons are more than enough to expect a more precise 
definition of UML on this topics. 
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